Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Microbes Infect ; : 1-30, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2246199

ABSTRACT

With the ongoing COVID-19 pandemic and the emergence of various SARS-CoV-2 variants, a comprehensive evaluation of long-term efficacy of antibody response in convalescent individuals is urgently needed. Several longitudinal studies had reported the antibody dynamics after SARS-CoV-2 acute infection, but the follow-up was mostly limited to 1 year or 18 months at the maximum. In this study, we investigated the durability, potency, and susceptibility to immune evasion of SARS-CoV-2-specific antibody in COVID-19 convalescents for 2 years after discharge. These results showed the persistent antibody-dependent immunity could protect against the WT and Delta variant to some extent. However, the Omicron variants (BA.1, BA.2, and BA.4/5) largely escaped this preexisting immunity in recovered individuals. Furthermore, we revealed that inactivated vaccines (BBIBP-CorV, CoronaVac, or KCONVAC) could improve the plasma neutralization and help to maintain the broadly neutralizing antibodies at a certain level. Notably, with the time-dependent decline of antibody, 1-dose or 2-dose vaccination strategy seemed not to be enough to provide immune protection against the emerging variants. Overall, these results facilitated our understanding of SARS-CoV-2-induced antibody memory, contributing to the development of immunization strategy against SARS-CoV-2 variants for such a large number of COVID-19 survivors.

3.
J Med Virol ; 94(8): 3992-3997, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802457

ABSTRACT

The SARS-CoV-2 vaccines have been widely used to build an immunologic barrier in the population against the COVID-19 pandemic. However, a newly emerging Omicron variant, including BA.1, BA.1.1, BA.2, and BA.3 sublineages, largely escaped the neutralization of existing neutralizing antibodies (nAbs), even those elicited by three doses of vaccines. Here, we used the Omicron BA.1 RBD as a fourth dose of vaccine to induce potent Omicron-specific nAbs and evaluated the broadly neutralizing activities against SARS-CoV-2 variants. The BA.1-based vaccine was indeed prone to induce a strain-specific antibody response substantially cross-reactive with BA.2 sublineage, and yet triggered broad neutralization against SARS-CoV-2 variants when it was used in the sequential immunization with WT and other variant vaccines. These results demonstrated that the booster of Omicron RBD vaccine could be a rational strategy to enhance the broadly nAb response.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
J Proteome Res ; 19(11): 4470-4485, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-851211

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emergent enteropathogenic coronavirus associated with swine diarrhea. Porcine small intestinal epithelial cells (IPEC) are the primary target cells of PDCoV infection in vivo. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively identify differentially expressed proteins (DEPs) in PDCoV-infected IPEC-J2 cells. A total of 78 DEPs, including 23 upregulated and 55 downregulated proteins, were identified at 24 h postinfection. The data are available via ProteomeXchange with identifier PXD019975. To ensure reliability of the proteomics data, two randomly selected DEPs, the downregulated anaphase-promoting complex subunit 7 (ANAPC7) and upregulated interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), were verified by real-time PCR and Western blot, and the results of which indicate that the proteomics data were reliable and valid. Bioinformatics analyses, including GO, COG, KEGG, and STRING, further demonstrated that a majority of the DEPs are involved in numerous crucial biological processes and signaling pathways, such as immune system, digestive system, signal transduction, RIG-I-like receptor, mTOR, PI3K-AKT, autophagy, and cell cycle signaling pathways. Altogether, this is the first study on proteomes of PDCoV-infected host cells, which shall provide valuable clues for further investigation of PDCoV pathogenesis.


Subject(s)
Chromatography, Liquid/methods , Coronavirus Infections/metabolism , Proteome/analysis , Tandem Mass Spectrometry/methods , Animals , Cell Line , Coronavirus , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Epithelial Cells/virology , Proteome/chemistry , Proteome/metabolism , Proteomics , Swine
6.
Transbound Emerg Dis ; 68(4): 2130-2146, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-810790

ABSTRACT

As a novel enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) warrants further investigation. In this study, a Chinese PDCoV strain, designated CHN-HN-1601, was isolated from the faeces of a diarrhoeic piglet. After plaque purification, the genome was determined which shared 97.5%-99.5% nucleotide identities with 71 representative PDCoV strains available in the GenBank. The pathogenic properties of CHN-HN-1601 were evaluated using 5-day-old piglets. All inoculated piglets developed severe diarrhoea from 2 days post-infection (dpi) onwards. To our surprise, two periods of diarrhoea starting from 2 to 7 dpi and from 13 to 19 dpi were observed in affected piglets during the experiment. Faecal viral shedding of the inoculated piglets was detected by real-time RT-PCR, with viral shedding peaked at 4 and 16 dpi, respectively. At necropsy at 5 dpi, the main gross lesions included transparent, thin-walled and gas-distended intestines containing yellow watery contents. Further histopathological examinations, including haematoxylin and eosin staining, immunohistochemistry and RNAscope in situ hybridization, revealed that the virus infection caused severe villous atrophy of the small intestines, with PDCoV antigen and RNA mainly distributed in the cytoplasm of the villous epithelial cells of jejunum and ileum in piglets. The dynamic production of PDCoV-specific IgG and neutralizing antibodies in serum of the affected piglets was also assessed using a whole virus-based ELISA and an immunofluorescence assay-based neutralization test, respectively. Furthermore, a full-length cDNA infectious clone of CHN-HN-1601 was constructed using a bacterial artificial chromosome system. The rescued virus exhibited in vitro growth and pathogenic properties similar to the parental virus. Taken together, our study not only enriches the information of PDCoV, but also provides a useful reverse genetics platform for further pathogenesis exploration of the virus.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Clone Cells , Coronavirus Infections/veterinary , DNA, Complementary , Deltacoronavirus , Genomics , Swine , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL